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The use of a superposition of solutions of Poisson's equation is proposed as the 
system of basis functions for a finite element. 

The development of the ideas contained in the finite-element method (FEM) and boundary- 
element method (BEM) led to the appearance of the hybrid superelement method (8EM) [i, 2]. 
The system of basis functions for the superelement is constructed using the BEM techniques. 
A global approximation of the solution within the limits of the superelement often gives 
better results, even with a smaller number of parameters, then standard finite-element func- 
tions =of the form in [3]. Another advantage of SEM is that, on combining superelements, two 
matching conditions (for the potential and the flux) may be written in explicit form; the 
complete matrix of the system of equations will take the strip structure characteristic of 
FEM. 

BEM is based on the algebraic approximation of integral equations relating the values 
of the potential T and flux density q at the boundary of the region 

M 

]=1 
(1) 

The form of the boundary equations for Poisson's equation introduced in [4] is used here 

-- AT (2) 

w i t h  a c o n s t a n t  ( w i t h i n  t h e  l i m i t s  o f  t h e  s u p e r e l e m e n t )  s o u r c e  t e r m .  As a r e f e r e n c e  p o i n t ,  
t h e  p o t e n t i a l  i n  Eq. (1) i s  t a k e n  t o  be  t h e  mean s u p e r e l e m e n t  p o t e n t i a l  

1 .f T(x, y, z) dV. 
: - K , v )  

This choice of reference point is very convenient in solving nonsteady heat-conduction pro- 
blems by the superelement method [4] and a series of steady potential functions. For exampl~ 
in the problemlof torsion of a prismatic rod [5], T determines the rod rigidity. It is more 
important that the form of the boundary conditions in Eq. (i) allows the matrix Cij to be 
symmetrized and permits the use of highly effective algorithms for symmetric linear systems 
in solving the problem. 

In determining the influence coefficients C~, the boundary values of T and q are usually 
~J 

approximated by splines of different orders [1-3, 5]. To increase the accuracy of the calcu- 
lations, it would be desirable to match the approximations of T and q, taking account of the 
type of equation to be solved and the geometry of the region. Regrettably, this matching 
cannot be accomplished directly, using existing BEM techniques. However, the principle of 
superposition of the solutions of a linear equation (for example, the Poisson's equation) 
allows the influence coefficients found using BEM to be transformed so as to ensure self-con- 
sistent approximation of the boundary values of T and q. In the present work~ it is shown 
that this also permits significant reduction in the number of parameters required for global 
approximation of the solution Within the limits of the superelement. The superelements con- 
structed in this way are said to be regular. 

S. M. Kirov UralPolytechnic Institute, Sverdlovsk. Translated from Inzhenerno-Fiziches- 
kii Zhurnal, Vol. 55, No. 6, pp. 1020-1027, December, 1988. Original article submitted June 
18, 1987. 

1444 0022-0841/88/5506-1444512.50 �9 1989 Plenum Publishing Corporation 



TABLE i. 
(6) 

Coefficients of the Generalized Function in Eq. 

Function A, A 2 A~ 
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Zero-Order Regular Elements 

Consider the region with a boundary consisting of N rectilinear segments (Fig. la). 
The heat flux at the boundary of the region is approximated by a step function taking the 
constant value qi on the i-th segment of the contour. At the boundary of the region, N 
control points (Xi, Yi) are chosen, and the temperature at the i-th control point is denoted 
by T i = T(Xi, Yi)~ The position of the control points at the boundary of the region may_be 
arbitrary. In many cases, it is more convenient to consider the mean temperature value T i 
at the i-th segment of the contour rather than the temperatures at the control points. 

Let T(X, Y, j) be the solution of Eq. (2) when q = -qjFj/V, with the following condi- 
tions at the boundary 

- z OT (x ,  v ,  i) 
On 

- -  ---- / q1 on the j - th  segment of the boundary 

L 0 on other segments, 

where n is the internal normal. The values of Ti, Ti' ~ corresponding to this temperature 
distribution are denoted by Ti(j), Ti(J), T(J), and the coefficients Cij in Eq. (1) are de- 
fined as follows (M = N) 

C~, = (T~ (i) -- T (]))lq,; C~J = (Y~ (i) -- f(J))/qj (3) 

It follows from the principle of superposition of the solutions of Eq. (2) that the coeffi- 
cients in Eq. (3) ensure accurate satisfaction of the boundary Eq. (1) for any function 
T(X, Y) which corresponds to Eq. (2) and has piecewise-constant values of the normal deriva- 
tive at the boundary of the region. 

Three-dimensional zero-order regular elements may be constructed similarly. It is 
especially simple to determine the coefficients Cij for prismatic bodies with a constant 
form of the cross section. Consider, for example, a right prism of height h. The lateral 
faces of the prism are numbered i, 2, ..., N -2, and the numbers N - i, N are assigned to 
its upper and lower bases. Then the matrix of coefficients Cij takes the form 

c ~ , = c l j ,  i , j = l ,  2 . . . . .  N - - 2 ;  

C i j = C j ~ = 0 ,  i - - N - - l ,  N, � 9  1, 2 . . . . .  N - - 2 ;  

Ci~ == h/3X,  i = N - -  1, N; CN--I ,  N = C u .  N--1 = - -  h/6%. 

-| . 

Here Cij is the matrix of coefficients of dimensionality (N-2) • (N-2) for a two-dimensional 
r e g u l a r  e l e m e n t  c o i n c i d i n g  i n  f o r m  w i t h  t h e  b a s e  o f  t h e  p r i s m .  

First-Order Regular Elements 

Passing to a linear approximation of the flux at the boundary of the region, it must 
be taken into account that q usually undergoes a discontinuity at the ends of the rectilinear 
boundary elements. Therefore, for each segment i bounding the region (Fig. la), two control 
points must be introduced for the heat flux; they are assigned the numbers i and i' = N + i 
(Fig. lb). Thus, the heat-flux density at the i-th segment will vary linearly from q = qi to 
q = qi'; in the general case, the value Of q at point i' of segment i may not coincide with 
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Fig. i. Numbering of boundary elements: a) zero-order 
approximation of flux; b) first-order case. 
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Fig. 2. a) geometric region; b) BEM solution 
with zero-order approximation of flux. The figures on the 
curves give the order of approximation of the potential. 

the value of q at point i + i of segment i + i; qi' # qi+1- Accordingly, 2N trial functions 
,f �9 _ 

qi' qi (l - i, 2, ..., N; i' = N + i, N + 2, ..., 2N), each of which is nonzero only on the 
i-th segment, are defined. Within the limits of the segment, the trial functions vary linear- 
ly, as in Fig. lb. 

Suppose that T(X, Y, j) is the solution of Eft. (2) when ~ = -qjFj/2V with the boundary 
conditions 

aT(X, Y, j) 
On 

= q i ,  j= l ,  2 ..... 2N. 

At the boundary of the region, 2N control points are chosen, and (2N) 2 coefficients Cij are 
defined in Eq. (1) (M = 2N) 

c u  = (T~ ( j )  - -  f ( j ) ) /q j .  (4) 

It follows from the principle of superposition of solutions of Eq. (2) that the coefficients 
in Eq. (4) ensure accurate satisfaction of Eq. (i) for any function T(X, Y) which corresponds 
to Eq. (2) and has a piecewise-linear normal derivative at the boundary of the region. 

Regular superelements of second andhigher order may be constructed similarly. 

Comparison with BEMMethod 

Consider the simplest heat-conduction problem for a rectangular region (Fig. 2a). The 
heat flux at the upper side of the rectangle q = 1 is compensated by the uniformly distributed 
heat sources 9 = -0.5. In these conditions, the function T = 0.25Y2 gives a solution of 
Eq, (2), The temperature difference between the upper and lower sides of the rectangle is 
T2--TI = i. 

The value of Ta-T~ is now determined by direct BEM, which was exhaustively described in 
[2]. If four constant rectilinear boundary elements coincidin~ with the sides of the rect- 
angle are adopted, it is found that T2 - TI = 0.66. Using four elements which are linear 
with respect to the potential and constant with respect to the flux, it is found that T~ -- 
T~ = 1.21. Finally, 4K boundary elements may be adopted, dividing each side of the rectangle 
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Fig. 3. Calculation of the coefficients: a) numbering 
of the nodal points; b) local system of coordinates. 

into K identical parts. As is evident from Fig. 2b, the rate of convergence of BEM (taking 
account of the simplicity of the problem) leaves room for improvement. The accurate value 
of T2- TI for the given example may be obtained using four boundary elements with a para- 
bolic approximation of the temperature at the boundary of the region. 

A set of other examples may be given, showing that the piecewise-constant approximation 
of the flux at the Boundary of the region corresponds roughly to the quadratic approximation 
of the temperature (potential). The system of BEM equations for N boundary elements here 
consists of 2N equations with 6N 2 different coefficients. In the class of functions with 
piecewise-constant values of the derivative at the boundary of the region, 2N BEM equations 
are approximately equivalent to N boundary equations for a regular element with N 2 coeffi- 
cients Cij. 

The reduction in the number of equations and coefficients has a favorable influence off 
the stability of the calculations relative to rounding error, and also considerably simpli- 
fies the solution of the whole problem for the complex region consisting of many superele- 
ments. 

Calculation of Coefficients 

Determining the coefficients Cij reduces to solving Eq. (2) in a specified region with 
special Boundary conditions of the type considered above. In [4], the finite-difference 
method was used for this purpose. However, this method is not very effective and is not 
readily susceptible to automation. At the same time, the BEM technique allows a better 
approximation to the coefficients C~ to be obtained using simple analytical expressions 

• 
Below, relations are given allowing the coefficients Cij to be determined for zero-order 
two-dimensional regular superelements. The choice of these relations is based on the results 
Qf [2], and is not giVen here. 

Consider the region in Fig. la, and let the centers of the segments which form its 
boundary be numbered by the even indices 2i, i = i, 2, ..., N, proceeding clockwise around 
the contour (Fig. 3a). The dimensions of the segments F2i and the piecewise-constant values 
of the flux density at the Boundary of the region q2i are also assigned these indices. The 
ends of the segments are numbered by the odd numbers I, 3, 5, ..., 2N - i, so that the 
vector F~i connects the points 2i - i, 2i + i. On each segment, the temperature is approxi- 
mated by a parabola, taking the values Tj, j = 2i- i, 2i, 2i + 1 at three control points of 
the segment. 

N 

Taking account of the condition--qV=~ F=jq2j, the equations of direct BEM for Eq. 
]=I 

(2) may be written in the form 

2N N 
1 

E EuTj  - -  Guq2j, i =  1, 2 . . . . .  2N. 
i=l l=l 

(5) 

It is expedient to introduce the geneEalized function ~(i, F) depending on the position 
of the point i relative to the vector F, associated with the local coordinate system uOv 
(Fig. 3b): 

(6) 
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Fig. 4. Discretization of elliptical rod cross 
section using finite and boundary elements. 

With specific values of the coefficients At, A2, A3, Eq. (6) defines the functions Eo, El, 
E2, Go, G~ (Table I). Using these functions, the coefficients in Eq. (5) for i = I, 2, 
.... 2N and different j may be found 

E~j=4E~( i ,  F j ) - - 4 E 2 ( i ,  Fi), ] = 2 ,  4, 6 . . . . .  2N; 

E~j = E o (i, F3+0 -- 3El (i, F~.+ 1) -b 2E~. (i, Fj+l) -- 

- -E~( i ,  F~_x)q-2Ez(i, Fj_~), ] =  1, 3, 5 . . . . .  2 N - - l ;  
N 

Gij = Go(i, F~)-- Fj ,%~ G~(i, F~h), ] =  2, 4, 6, 2N. 
�9 V . , i , ~  .... K=I  

The coefficients of the matrices Eij on the left-hand side of Eq. (5) satisfy the con- 
2N 

dition ~Eij = 0, which is used to determine the diagonal terms Eii, i = i, 2, ..., 2N. 
]=i 

Consequently , one of the equations in Eq. (5) is a consequence of the others, and Eq. (5) 

may be rewritten in the form 

~N--I l N 
--'~ E ~ j ( T i - - T 2 ~ v ) = - - - ~ -  Z Giiq,.,j, i =  l, 2 . . . . .  2 N - - 1 ,  (7) 
1=1 ]~1"= 

Where the temperature T2N at the center of the next segment plays the role of reference 
point. Then the matrices Eij of dimensions (2N -- I) x (2N -- i) may be manipulated, and Eq. 

(7) takes the form 

1 N 
T~- -  T2N = --~ Biiq~j, i = I, 2 . . . . .  2 N - -  1. 

1=1 

(8) 

Conversion from the temperature values at the control points T i, i = i, 2, ..., 2N to 
the mean temperature of the segments ~2i, i = i, 2, ..., N, is undertaken by the formula 
T2i = (T2i-~ + 4T2i + T=i+~)/6. Adding Eq. (8) with the corresponding weighting factors, it 

is found that 

-- 1 N 

T2i--T~.~r---------~ ZBi~q2i ,  i=: 1, 2 . . . . .  N. (9) 
1=1 

The system in Eq. (9) differs from Eq. (i) in that the temperature T2N rather than the 
mean �9 of the superelement T is taken as the reference point here. The relation 
between T and the values of the functions at the boundary of the region is given by the 
second Green's formula. Using the weighting function R 2 = X 2 + y2, it is simple to establish 
that, for the given class of regions with a piecewise rectilinear boundary and the class of 
functions with a piecewise constant normal derivative at the boundary, the following relation 

holds 

i=l  t 
(i0) 
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where 

Using Eq. 

~ = F2i ( - -  X~i sin ~2i + Y,~i cos ~2i)/2V; 

~i = F2i [X;i-1 -~- Xoi-lX~i+l -~ 2i+1 "-}- 3RZ -}- 2i--1 + Y'2i-lY2i+l @ Y2i+I]/12V; 

N 2 = + + Y % - O  - 

i=1  

- -  (F2i+l - -  F2i_l) (X2~+1 -t- X~i-1) (X2i+l -~ X~i-O]/12V. 

(9), T2 i may be eliminated from Eq. (i0) 

] N 

-- TgN = -- ~- ~ ?iqo_i, 
i=1 

(il) 

where 

N 

Subtracting Eq. (ii) from each relation in Eq. (9), this system is transformed to the form 
in Eq. (i) 

where Cij = (Yi -- Bij )/%- 

The above analytical Eqs. 

N 

T 2 i - - T  =: ~ C i j q 2 j ,  i = 1, 2, N, (12)  
i=1 

(6)-(12) are very amenable to computer programming and allow 
the coefficients Cij and the solution of Eq. (2) to be very rapidly found. Calculation for 
a region of arbitrary form with a contour consisting of i00 segments requires around 15 sec 
of machine time when using an EC-1030 computer. 

Example of Use 

It was shown in [4] that the regular-element method (REM) permits effective solution of 
many problems of nonsteady heat conduction associated with modeling of the complex heat 
transfer in different units. The use of REM in solving the problem of the heating of regular 
bodies in a counterflow furnace permits severalfold reduction in volume of the calculations 
in comparison with the finite'difference method. More considerable benefits are obtained 
for bodies of complex form, such as wide-band girders, rails, and I beams. 

However, the efficiency of the method in solving complex problems depends on many 
factors which are not readily taken into account and hinder quantitative estimation. There- 
fore, it is more important to consider simple test examples, for which it may be established 
where the limits of applicability of a particular method are reached. One such example was 
considered above. Another is associated with the torsion of a rod of constant elliptical 
cross section, with major semiaxis of length 4 and minor semiaxis 2 (Fig. 4). The rigidity 
of the rod in torsion is determined by the integral 

J = 2 ; T (X, Y) dXdF = 2VT,, 
(v) 

w h e r e  t h e  f u n c t i o n  T(X, Y) i s  t h e  s o l u t i o n  o f  Eq.  (2)  w i t h  k = 1 ,  ~ = - 2 .  At  t h e  b o u n d a r y  
o f  t h e  r e g i o n ,  T(X,  Y) = 0 .  

T h i s  p r o b l e m  was s o l v e d  i n  [1.] u s i n g  FEM (48  l i n e a r  f i n i t e  e l e m e n t s )  a n d  BEM (16 l i n e a r  
b o u n d a r y  e l e m e n t s ) .  The r e s u l t s  o b t a i n e d  ( J  = 4 . 5 6 0  f o r  FEM and  J = 4 ~  f o r  BEM) d i f f e r  
by  a p p r o x i m a t e l y  10% f r o m  t h e  a c c u r a t e  s o l u t i o n  f o r  a n  e l l i p s e  ( J  = 5 . 0 2 6 )  and  by  5% f o r  t h e  
i n s c r i b e d  1 6 - s i d e d  f i g u r e  ( J  = 4 . 7 8 5 ) .  U s i n g  REM--  E q s .  ( 6 ) - ( 1 2 )  -- t h e  r e s u l t  o b t a i n e d  i s  
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J = 4.793, and the corresponding errors are 4.8 and 0.2%. Thus, the REM error in the given 
case is entirely determined by the error in describing the geometry of the region using a 
set of rectilinear segments. Using 32 rectilinear boundary elements, for example, the result 
obtained is J = 4.966, which practically coincides with the accurate value for an inscribed 
32-sided figure, but differs from the solution for an ellipse by 1.2%. 

This example shows that linear or quadratic approximation of the flux at a rectilinear 
boundary element is not particularly meaningful in many cases, whereas quadratic approxima- 
tion of the potential almost always gives benefits in terms of the accuracy of the calcula- 
tions. Another conclusion is that, with the aim of improving the description of the body 
geometry, it is desirable to use curvilinear elements with a high order of approximation. 
The difficulties arising here are associcated with the lack of corresponding analytical 
solutions, which means that it is necessary to use quadratic Gaussian formulas in calculat- 
ing the influence coefficients, with considerable increase in the consumption of machine 
time. 

NOTATION 

%, thermal conductivity; T, potential; q, q*, flux density; ~, internal source; F, di- 
mension of boundary element; V, dimension of superelement; X, Y and u, v, global and local 
coordinate systems. 
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